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Applications of complex analysis to precession, nutation and aberration
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ABSTRACT
Points on the surface of a sphere can be mapped by stereographic projection to points on the
plane of complex numbers. If the points on the sphere are identified with the directions of
incoming light rays, then the effect of a Lorentz transformation, a rotation plus a boost, is
represented by a bilinear or Möbius transformation applied to points on the complex plane.
This procedure allows the effects of the aberration of light, precession and nutation, required
for computing the mean and apparent positions of celestial objects, to be accounted for in a
common framework and yields expressions that are readily evaluated in practice. The general
form of the bilinear transformation representing a pure Lorentz boost is derived. Explicit
expressions are given for the bilinear transformations representing aberration, precession and
nutation as well as frame bias and transformations to the Celestial Intermediate Reference
System. The approach described simplifies, and is an alternative to, the standard matrix
methods commonly used to perform coordinate system rotations.

Key words: relativity – celestial mechanics – ephemerides – reference systems.

1 IN T RO D U C T I O N

Several methods are available for the practical conversion between
spherical coordinate systems (Heard 2006). In the most familiar and
widely used of these, a point on the sphere is represented by a vector
of unit length in three-dimensional (3D) space. Rotations are then
performed by the action of classical rotation matrices. Rotations
may also be performed by representing points as the components of
a quaternion and appealing to the properties of quaternion multipli-
cation. The quaternion components are related to the Gibbs vector
whose direction and magnitude specify the axis and angle of the ro-
tation. This is briefly discussed in connection with IAU precession
by Capitaine, Wallace & Chapront (2003). As an alternative to the
3D representation of points on the sphere, their coordinates may be
used to form the elements of a 2 × 2 complex matrix with rota-
tions being brought about by 2 × 2 matrix multiplication (Arfken &
Weber 1995). This approach arises in the quantum mechanics of
spin 1/2 objects. It can be demonstrated that the complex 2 × 2 ma-
trix formalism is general enough to provide an exact representation
of Lorentz transformations.

A point on a sphere is fully specified by two coordinates. The
3D, complex 2 × 2 matrix and quaternion representations intro-
duce additional degrees of freedom and must be applied subject
to constraints. An alternative method, that avoids this requirement,
is to map points on the sphere by stereographic projection on to
points in the complex number plane. Rotations of the sphere are
then isomorphic to simple bilinear or Möbius transformations and
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can be used in practice to carry out coordinate transformations.
This method has been discussed previously in the context of as-
tronomical applications (Stuart 1984). Moreover, it can be shown
(Penrose & Rindler 1984; Das 1993; Bacry 2004) that the approach
is sufficiently general as to incorporate the effect of an arbitrary
Lorentz transformation on light-like world lines passing through
the observer’s position or, equivalently, light rays seen projected
on the celestial sphere. The upshot is that simple bilinear transfor-
mations can be used to exactly represent both coordinate rotations
and the aberration of light. As they are merely different aspects of
an overall Lorentz transformation, it is natural that they be treated
under a common framework.

The use of bilinear transformations to represent rotations and
Lorentz boosts offers a number of significant practical advantages.
The two coordinates that define a point on the sphere are sub-
sumed into a single complex number leading to expressions of
great simplicity, transparency and compactness. Complex numbers
are a native feature of most computer languages used in scientific
applications, FORTRAN, C++ etc., and the bilinear transformations can
be straightforwardly evaluated in practice using a small number of
built in arithmetic operations.

Stereographic projection of spherical coordinates on to the com-
plex number plane has proved useful elsewhere. It has been used
as a tool to derive spherical trigonometric identities from plane
trigonometry (Donnay 1945; Stuart 1984), for calculations in ce-
lestial navigation (Stuart 2009) and to treat problems in rotational
dynamics with applications to spacecraft control systems (Tsiotras
1996).

A disadvantage of the method is that absence of a redundant
degree of freedom necessarily comes at the price of a singularity
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occurring in some direction. In practice this is of little consequence
as the singularity can be arranged to be at a point, e.g. the North or
South Pole, away from the region of interest. A singularity with the
same origins is present in the Gibbs vector and methods for placing
it at an arbitrary location have been given by Schaub & Junkins
(1996).

In this work, the method of stereographic projection along with
bilinear transformations is reviewed. Expressions for the coeffi-
cients of the bilinear transformations used to represent the IAU
precession quantities (IERS Conventions 2003; Hilton et al. 2006)
will be given. In addition, an expression for the bilinear transfor-
mation representing a Lorentz boost in terms of the magnitude and
direction of the observer’s velocity is derived. This results in a
formalism incorporating coordinate rotations and the aberration of
light into a simple common framework that is straightforwardly
applicable in practice.

The transformations discussed here require knowledge only of
the direction of an object in some reference frame. Other effects
come into play in the computation of an object’s apparent position.
In particular light travel time and the gravitational deflection of light
require information as to the object’s distance and are not considered
here. It will be assumed that these effects are treated by standard
methods (Murray 1981). Algorithms for mean and apparent place
computations have been given by Kaplan et al. (1989). The results
presented here allow a number of the steps to be replaced by an
alternative, more compact, framework.

2 ST E R E O G R A P H I C PRO J E C T I O N
A N D B I L I N E A R TR A N S F O R M AT I O N S

In complex number theory, stereographic projection is used to es-
tablish an isomorphism between points on the complex plane and
points lying on a sphere – the Riemann sphere. Consider a point, P,
with 3D Cartesian coordinates (X, Y , Z) lying on the surface of a
unit sphere centred at the origin and hence satisfying the condition
X2 + Y 2 + Z2 = 1.

Let the point’s spherical coordinates be (α, δ) with⎛
⎝ X

Y

Z

⎞
⎠ =

⎛
⎝ cos δ cos α

cos δ sin α

sin δ

⎞
⎠ . (1)

The spherical coordinates could represent right ascen-
sion/declination, longitude/latitude or other similar pair. Stereo-
graphic projection can be performed in a number of equivalent
ways. For the present purposes, the complex number plane is taken
to be coincident with the X–Y plane. As shown in Fig. 1, a straight
line is drawn from the North Pole, N, of the sphere through the
point P to intersect with the complex plane at the complex number,

Figure 1. Stereographic projection of the point, P, on the sphere on to the
point, z, on the complex number plane.

z, given by

z = tan

(
π

4
+ δ

2

)
eiα = X + iY

1 − Z
. (2)

For points on the sphere lying below the X–Y plane (Z < 0) the
point of intersection will be inside the sphere. The projection can
be inverted using

α = arg z, δ = 2 tan−1 |z| − π

2
(3)

or in terms of rectangular coordinates

X = 2Rez

|z|2 + 1
, Y = 2Imz

|z|2 + 1
, Z = |z|2 − 1

|z|2 + 1
. (4)

A bilinear or Möbius transformation takes the general form

T (z) = az + b

cz + d
(5)

for complex constants a, b, c and d. The coefficients are often nor-
malized such that ad − bc = 1 although this not a requirement when
used in the bilinear transformation (5). The inverse transformation
is of the same form

T−1 (z) = dz − b

−cz + a
. (6)

It can be shown (Nevanlinna & Paatero 1969) that the effect of a
pure rotation of the Riemann sphere is represented by a bilinear
transformation

T (z) = az + b

−b̄z + ā
, (7)

where the bar denotes complex conjugation. Bilinear transforma-
tions of this type will be referred to as bilinear rotations. In this case
the normalization condition becomes

|a|2 + |b|2 = 1 (8)

under which a and b may be identified with the Cayley–Klein pa-
rameters (Arfken & Weber 1995) whose real and imaginary parts
are further simply related to the components of quaternions used
to represent rotations. A brief overview is given in Appendix A.
Derivations and numerical examples of coordinate system rotations
performed using equation (7) can be found in the literature (Stuart
1984).

In the form (2), the stereographic projection exhibits a singularity
at the North Pole. The singularity may be placed at the South Pole
instead by adopting the transformation

z = tan

(
π

4
− δ

2

)
e−iα = X − iY

1 + Z
(9)

with inversion formulae

α = − arg z, δ = −2 tan−1 |z| + π

2
, (10)

X = 2Rez

1 + |z|2 , Y = − 2Imz

1 + |z|2 , Z = 1 − |z|2
1 + |z|2 . (11)

In the present work, results will be derived assuming a stereo-
graphic projection in the form (2). To adapt them for use in conjunc-
tion with the stereographic projection of the form given in (9), the
coefficients of the bilinear rotation are switched a ↔ d and b ↔ c.

General coordinate rotations can often be conveniently con-
structed from a sequence of elemental rotations. Bilinear rotations
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Table 1. The fundamental rotation matrices and their equivalent bilinear
rotation coefficients.

Rotation matrix Bilinear coefficients

R1 (φ) =
⎛
⎝ 1 0 0

0 cos φ sin φ

0 − sin φ cos φ

⎞
⎠ a = cos

φ

2
b = −i sin

φ

2

R2 (φ) =
⎛
⎝ cos φ 0 − sin φ

0 1 0
sin φ 0 cos φ

⎞
⎠ a = cos

φ

2

b = sin
φ

2

R3 (φ) =
⎛
⎝ cos φ sin φ 0

− sin φ cos φ 0
0 0 1

⎞
⎠ a = exp

(
−i

φ

2

)

b = 0

can be composed in a similar fashion:

T2 ◦ T1 (z) = a2

[
(a1z + b1)/(−b̄1z + ā1)

] + b2

−b̄2

[
(a1z + b1)/(−b̄1z + ā1)

] + ā2

=
(
a1a2 − b̄1b2

)
z + (b1a2 + ā1b2)

− (
b̄1ā2 + a1b̄2

)
z + (

ā1ā2 − b1b̄2

) . (12)

To facilitate the derivation of precession quantities, Table 1 lists
the fundamental rotation matrices R1, R2, R3 and bilinear rota-
tion coefficients, a and b, for use in equation (7), that perform the
equivalent rotation assuming stereographic projection of the form
(2). The rotation matrices, given here, act on a column vector, (1),
by multiplication on its left.

3 PRECESSION, NUTATION AND FRAME BI AS

The conversion from coordinates specified with respect to some
fundamental ‘fixed’ reference system to those with respect to the
true equator and equinox of date requires, among other things, that
effects of precession, nutation and any potential systematic frame
bias be taken into account. Standard procedures in accordance with
IAU resolutions are collected in USNO Circular No. 179 (Kaplan
2005). If the fundamental reference system is the Geocentric Ce-
lestial Reference System (GCRS), coordinates are first converted to
the J2000.0 system in terms of the mean equator and equinox of
J2000.0 via a small frame bias correction realized by a matrix B.
Transformations for precession to the mean equator and equinox of
date via a matrix, P(t), and nutation to the true equator and equinox
of date via a matrix, N(t), are then applied. Taken together

r true(t) = N(t)P(t)B rGCRS, (13)

where rGCRS is a position vector in the GCRS and r true(t) is the
equivalent vector given with respect to the true equator and equinox
of t. In the following sections T denotes the time in Julian centuries
since J2000.0,

T = (t − 245 1545.0)

36525
, (14)

where t is expressed in Barycentric Dynamical Time (TDB) Julian
days.

3.1 Precession

The most general 3D rotation can be specified in terms of three Euler
angles. Construction of a rotation matrix from a greater number

of parameters is a matter of convenience. The traditional three-
parameter form (Newcomb 1894; Lieske 1979) of the precession
matrix, P(t), is

P (t) = R3 (−zA) R2 (θA) R3 (−ζA) . (15)

The coefficients of the equivalent bilinear rotation, (7), are

a = cos
θA

2
exp

(
i
zA + ζA

2

)
, (16)

b = sin
θA

2
exp

(
i
zA − ζA

2

)
(17)

in which the arguments in arcseconds are (Hilton et al. 2006)

1

2
(zA − ζA) = −2.650545 − 0.003023T + 0.3969425T 2

+ 0.00012504T 3 − 0.000011313T 4

+ 0.0000000135T 5,

1

2
(zA + ζA) = 2306.080204T + 0.6957924T 2

+ 0.01814333T 3 − 0.000017284T 4

− 0.0000003039T 5,

θA = 2004.191903T − 0.4294934T 2

− 0.04182264T 3 − 0.000007089T 4

− 0.0000001274T 5.

The four-parameter representation of P(t) (Capitaine et al. 2003)
provides a clean separation of precession of the equator from pre-
cession of the ecliptic allowing precession rate adjustments to be
directly applied. This precession matrix is

P (t) = R3 (χA) R1 (−ωA) R3 (−ψA) R1 (ε0) , (18)

where ε0 is the obliquity of the ecliptic at J2000.0, ε0 =
84381.406000.

The coefficients of the equivalent bilinear rotation are

a = cos
ε0

2
cos

ωA

2
exp

(
i
ψA − χA

2

)

+ sin
ε0

2
sin

ωA

2
exp

(
−i

ψA + χA

2

)
, (19)

b = −i sin
ε0

2
cos

ωA

2
exp

(
i
ψA − χA

2

)

+ i cos
ε0

2
sin

ωA

2
exp

(
−i

ψA + χA

2

)
(20)

which can be written, fully in terms of half-sums and half-
differences of angles, as

a = 1

2

[
cos

(
ε0 + ωA

2

)
+ cos

(
ε0 − ωA

2

)]
exp

(
i
ψA − χA

2

)

− 1

2

[
cos

(
ε0 + ωA

2

)
− cos

(
ε0 − ωA

2

)]

× exp

(
−i

ψA + χA

2

)
, (21)

b = − i

2

[
sin

(
ε0 + ωA

2

)
+ sin

(
ε0 − ωA

2

)]
exp

(
i
ψA − χA

2

)

+ i

2

[
sin

(
ε0 + ωA

2

)
− sin

(
ε0 − ωA

2

)]

× exp

(
−i

ψA + χA

2

)
. (22)

C© 2009 The Author. Journal compilation C© 2009 RAS, MNRAS 400, 1366–1372

 by guest on July 25, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/
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The overall factor of 1/2 in expressions for a and b in equations (21)
and (22) can be dropped when used in equation (7) as it does not
affect the final result. The function arguments in arcseconds are

1

2
(ε0 − ωA) = − 0.012877T + 0.0256312T 2

− 0.00386252T 3 − 0.000000234T 4

+ 0.0000001669T 5,

1

2
(ψA + χA) = 2524.518955T − 1.7302181T 2

− 0.00117621T 3 + 0.000151757T 4

− 0.0000000756T 5,

1

2
(ψA − χA) = 2513.962552T + 0.6512112T 2

+ 0.00003576T 3 − 0.000018906T 4

− 0.0000000196T 5

with (1/2)(ε0 + ωA) = ε0 − (1/2)(ε0 − ωA). Note that all of the
polynomials given explicitly above vanish at T = 0.

3.2 Nutation

In transformations (15) and (18) in which nutation is applied sepa-
rately, the corrections are defined in terms of the mean obliquity of
the ecliptic of date, εA, given by

εA = ε0 − 46.836769T − 0.0001831T 2

+ 0.00200340T 3 − 0.000000576T 4

− 0.0000000434T 5

along with the luni-solar and planetary nutation in obliquity, �ε,
and longitude, �ψ , computed using a compatible nutation model
(Seidelmann 1982; Matthews, Herring & Buffet 2002; Capitaine,
Wallace & Chapront 2003).

The general form of the nutation matrix is

N (t) = R1 (− [εA + �ε]) R3 (−�ψ) R1 (εA) (23)

for which the coefficients of the equivalent bilinear rotation are

a = cos
�ε

2
cos

�ψ

2
+ i cos

(
εA + �ε

2

)
sin

�ψ

2
, (24)

b = sin

(
εA + �ε

2

)
sin

�ψ

2
+ i sin

�ε

2
cos

�ψ

2
. (25)

3.3 Frame bias

The ICRS reference frame is nominally aligned with the J2000.0
coordinate system, however, a small offset, or frame bias, exists
with conversion between the two taking the form

rmean(2000) = BrGCRS. (26)

The matrix B is given by

B = R1 (−η0) R2 (ξ0) R3 (dα0) , (27)

where dα0 = −14.6 mas, ξ 0 = −16.6170 mas and η0 =
−6.8192 mas. The equivalent bilinear rotation has coefficients

a =
[

cos
η0

2
cos

ξ0

2
− i sin

η0

2
sin

ξ0

2

]
exp

(
−i

dα0

2

)
, (28)

b =
[

cos
η0

2
sin

ξ0

2
+ i sin

η0

2
cos

ξ0

2

]
exp

(
i
dα0

2

)
(29)

which can alternatively be written

a = 1√
2

cos

(
η0 − ξ0

2

)
exp

(
−i

[
dα0

2
+ π

4

])

+ 1√
2

cos

(
η0 + ξ0

2

)
exp

(
−i

[
dα0

2
− π

4

])
, (30)

b = 1√
2

sin

(
η0 − ξ0

2

)
exp

(
i

[
dα0

2
+ 3π

4

])

+ 1√
2

sin

(
η0 + ξ0

2

)
exp

(
i

[
dα0

2
+ π

4

])
, (31)

where the overall factor of 1/
√

2 imposes the unimodularity condi-
tion (8) but can be dropped when used in bilinear rotations, (7). Up
to second order in the variables dα0, ξ 0 and η0,

a = 1 − 1

8
(dα0)2 − 1

8
η2

0 − 1

8
ξ 2

0 − i

(
1

2
dα0 + 1

4
η0ξ0

)
, (32)

b = 1

2
ξ0 − 1

4
dα0η0 + i

(
1

2
η0 + 1

4
dα0ξ0

)
. (33)

4 C O M B I N E D ROTAT I O N S

4.1 Fukushima parametrization

The four-parameter form of the rotation matrix (Williams 1994;
Fukushima 2003)

P (t) = R1 (−εA) R3 (−ψ) R1 (φ) R3 (γ ) (34)

possesses a number of significant practical advantages described be-
low. As the transformation involves four rotation angles, its bilinear
rotation coefficients will take a form analogous to equations (19),
(20) and equations (21), (22). Here only the former, more compact
version, will be given and is

a = cos
εA

2
cos

φ

2
exp

(
i
ψ − γ

2

)

+ sin
εA

2
sin

φ

2
exp

(
−i

ψ + γ

2

)
, (35)

b = i sin
εA

2
cos

φ

2
exp

(
−i

ψ − γ

2

)

− i cos
εA

2
sin

φ

2
exp

(
i
ψ + γ

2

)
. (36)

For the conversion from J2000.0 mean equator and ecliptic to the
mean equator and ecliptic of date,

rmean(t) = P(t)rmean(2000). (37)

The angles appearing in equations (35) and (36), in arcseconds, are

φ = ε0 − 46.811015T + 0.0511269T 2

+ 0.00053289T 3 − 0.000000440T 4

− 0.0000000176T 5,

1

2
(ψ − γ ) = 2513.962552T + 0.5326066T 2

+ 0.00006358T 3 − 0.000011832T 4

− 0.0000000204T 5,

1

2
(ψ + γ ) = 2524.518955T + 1.0258110T 2

− 0.00024880T 3 − 0.000014620T 4

+ 0.0000000056T 5.
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The arguments in equations (35) and (36) are expressed in terms
of polynomials of which two, εA and φ, are non-vanishing at T =
0. The alternative form, analogous to equations (30) and (31), has
arguments only one of which, (εA + φ)/2, does not vanish at T =
0. The arguments may also be constructed so as to incorporate
the effects of frame bias for conversion directly from GCRS to
coordinates referred to the mean equator and ecliptic of date. This
introduces a constant and affects up to the quadratic terms in T .
The parametrization (34) has the added advantage that the effect of
nutation can be simply included by adding the nutation in obliquity,
�ε, and longitude, �ψ , directly into equation (34), and hence into
equations (35) and (36), as εA → εA + �ε and ψ → ψ + �ψ .
Thus this single matrix form conveniently incorporates frame bias,
precession and nutation.

4.2 The Celestial Intermediate Reference System (CIRS)

The net effect of precession, nutation and frame bias, or any coordi-
nate system rotation in general, can be described by the location of
the pole of the new coordinate system followed by a rotation about
that pole. This forms the basis for CIRS used in the measurement of
the Earth’s rotation (IERS Conventions 2003). The transformation
from GCRS to CIRS takes the usual form

rCIRS = C (t) rGCRS. (38)

The matrix C(t) is defined in terms of the location Celestial Inter-
mediate Pole (CIP) with coordinates (X, Y , Z) in the GCRS and can
be written as

C (t) = R3 (−s)

⎛
⎜⎝

1 − âX2 −âXY −X

−âXY 1 − âY 2 −Y

X Y 1 − â
(
X2 + Y 2

)

⎞
⎟⎠

in which â = (1 + Z)−1 and Z = √
1 − X2 − Y 2. The quantity s is

an angle of rotation about the CIP called the Celestial Intermediate
Origin (CIO) locator. This matrix can simultaneously encapsulate
the effects of precession, nutation and frame bias. Methods for
computing the location of the CIP and the CIO have been given by
Capitaine & Wallace (2003).

The coefficients of the equivalent bilinear rotation are

a = exp
(

i
s

2

)
, b = X + iY

1 + Z
exp

(
i
s

2

)
(39)

which emphasizes, once again, the compactness and simplicity pro-
duced by using bilinear rotations. Imposing the unimodularity con-
dition (8) gives

a =
√

1 + Z

2
exp

(
i
s

2

)
, b = X + iY√

2 (1 + Z)
exp

(
i
s

2

)
. (40)

5 A B E R R AT I O N

The aberration of light due to the relative motion of the observer
with respect to the fundamental reference frame shifts the apparent
position of an object on the celestial sphere along a great circle
toward the direction of motion by an amount given by

tan
θ ′

2
=

√
c − v

c + v
tan

θ

2
= e−φ tan

θ

2
, (41)

where θ , θ ′ are true and apparent angles, respectively, c is the speed
of light, v is the magnitude of the observer’s velocity in the funda-
mental reference frame and the quantity φ is the rapidity.

It can be shown (Stuart 1984) that the angular separation, θ ,
between two points on the sphere with images under stereographic
projection z and z1 is given by

tan
θ

2
=

∣∣∣∣ z − z1

z̄1z + 1

∣∣∣∣ .

Let z1 be the complex number that is the image of the point on
the celestial sphere representing the observer’s direction of motion
with respect to the rest frame. The bilinear rotation

T1 (z) = z − z1

z̄1z + 1

places z1 at the origin of the complex plane and it follows immedi-
ately that in this coordinate system the effect of aberration amounts
to a simple scaling by the factor given in equation (41). Moreover,
in the original coordinate system, the aberration of light is described
by the bilinear transformation

T−1
1

(
e−φ.T1 (z)

) =
(
e−(φ/2) + |z1|2 e(φ/2)

)
z + 2z1 sinh(φ/2)

2zz̄1 sinh(φ/2) + (
e(φ/2) + e−(φ/2) |z1|2

) .

(42)

In equation (42) the coefficients of the bilinear transformation are
normalized to ad − bc = (

1 + |z1|2
)2

. Equation (42) applies a
Lorentz boost in the direction of z1 in an exact relativistically correct
manner. It is thus a simple matter to incorporate aberration together
with coordinate rotations in a compact and consistent framework.
Furthermore, equation (42) shows that a pure Lorentz boost, with
no associated rotation, is realized by a bilinear transformation (5)
in which the coefficients a, d are real numbers and b = c̄.

It is shown in Appendix A that with normalization ad − bc = 1
the bilinear coefficients equation (42) can be written as

T−1
1

(
e−φ.T1 (z)

)

=
(
cosh(φ/2) + Z1 sinh(φ/2)

)
z + (X1 + iY1) sinh(φ/2)

z (X1 − iY1) sinh(φ/2) + (
cosh(φ/2) − Z1 sinh(φ/2)

) ,

(43)

where (X1, Y 1, Z1) is a unit vector in the direction of the boost.
The quantities e−φ and z1 are most conveniently obtained using

rectangular coordinates by means of the relations

v =
√

Ẋ2 + Ẏ 2 + Ż2, z1 = Ẋ ± iẎ

v ∓ Ż
, e−φ =

√
c − v

c + v
, (44)

where the dot denotes differentiation with respect to time and c =
173.14463348 au d−1. The upper sign applies for stereographic pro-
jection in the form (2) and the lower for (9).

The bilinear transformation (42) can be written in the equivalent
form

T−1
1

(
e−φ.T1 (z)

) =
(
e−φ + |z1|2

)
z + z1

(
1 − e−φ

)
z̄1

(
1 − e−φ

)
z + (

1 + e−φ |z1|2
) (45)

which offers some computational efficiencies.

6 C O N C L U S I O N S

The foregoing paper has described the practical application of com-
plex analysis to computations of the mean and apparent places of
celestial objects. The methods described here place the correction
for the aberration of light and coordinate rotations accounting for
precession and nutation into a common and compact framework
that is straightforward to implement in practice.

Detailed algorithms for computing the mean and apparent places
of celestial objects have been given by Kaplan et al. (1989). Their
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Precession, nutation and aberration 1371

methods can be used to determine light travel time and gravitational
deflection of light. Having done this, the object’s observed direc-
tion is known and can represented as a single complex number,
z. The effect of aberration of light is obtained by performing the
bilinear transformation (42). Precession and nutation are accounted
for by applying bilinear rotations of the form (5), sequentially to
the resulting complex number, with coefficients a and b given in
Sections 3.1 and 3.2, respectively, or combined as in Section 4.
Corrections for frame bias are applied similarly if needed. The final
complex number result is then converted to spherical coordinates
by means of equations (3) or rectangular coordinates using equa-
tions (4). Transformations specified in terms of combined frame
bias–precession–nutation transformations are handled similarly.
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APPENDIX A : BILINEAR AND LORENTZ
T R A N S F O R M AT I O N S

In units in which the speed of light c = 1, a general Lorentz trans-
formation can be written in 2 × 2 complex matrix form as

M′ = L · M · L†, (A1)

where

M =
(

t + z x + iy
x − iy t − z

)
, L =

(
a b

c d

)
(A2)

with the constraint that the complex numbers a, b, c and d satisfy
ad − bc = 1. L† is the Hermitian conjugate (transposed complex
conjugate) of L.

To establish the connection between the Lorentz transformation
of points on the celestial sphere and the bilinear transformation
of points on the complex plane, note that a light ray reaching the
observer at t = 0 passes through space–time points satisfying the
condition

|M| = t2 − x2 − y2 − z2 = 0, (A3)

where |M| denotes the determinant of M. The 2 × 2 complex matrix
of the form

W =
( |w|2 w

w̄ 1

)
(A4)

uniquely associates each light-like trajectory reaching the observer
at t = 0 with a complex number, w. At the observer’s coordinate time
t = 1 a photon that passed through the observer’s position at t = 0
will be located at a point (x, y, z) somewhere on the unit sphere, x2 +
y2 + z2 = 1. The image of this point under stereographic projection
on to the complex plane is w = M12/M22 = (x + iy)/(1 − z).
Substituting M = W in equation (A1) gives

M′
12/M

′
22 = aw + b

cw + d
(A5)

and it follows that in the Lorentz transformed frame, coincident
with the original at t = t ′ = 0, the photon passes through a point at
t ′ = 1 whose stereographic projection is obtained by applying the
bilinear transformation (5).

The analysis of Section 5 exposes the close connection between
rotations and Lorentz boosts. Renormalizing the coefficients of the
bilinear transformation (42) such that ad − bc = 1 yields

a = cosh
φ

2
+ |z1|2 − 1

|z1|2 + 1
sinh

φ

2
, (A6)

b = c̄ = 2Rez1

|z1|2 + 1
sinh

φ

2
+ i

2Imz1

|z1|2 + 1
sinh

φ

2
, (A7)

d = cosh
φ

2
− |z1|2 − 1

|z1|2 + 1
sinh

φ

2
. (A8)

These should be compared to expressions given by Stuart (1984) for
the coefficients of a bilinear rotation representing a right-handed ro-
tation by an angle θ about an axis in the direction z1. After applying
the unimodularity condition (8) the results are

a = d̄ = cos
θ

2
− i

|z1|2 − 1

|z1|2 + 1
sin

θ

2
, (A9)

b = −c̄ = 2Imz1

|z1|2 + 1
sin

θ

2
− i

2Rez1

|z1|2 + 1
sin

θ

2
. (A10)

The relations (A9)–(A10) are transformed into (A6)–(A8) by setting
θ → i φ. Thus a pure Lorentz boost in the direction defined by z1

is equivalent to a rotation through an imaginary angle about an axis
lying in the direction of the boost.

With the aid of equations (4) the coefficients of the bilinear trans-
formation, (A9)–(A10), can be used to construct a vector

1

a + d
(ib + ic, b − c, ia − id) = (X, Y , Z) tan

θ

2
(A11)

known as the Gibbs vector in which the unit vector (X, Y , Z) is
the axis and θ is the angle of rotation. The right-hand side exhibits
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1372 R. G. Stuart

a singularity at θ = 180◦ but methods exist to move it to other
locations (Schaub & Junkins 1996).

The construction (A11) performed with equations (A6)–(A8)
gives

1

a + d
(ib + ic, b − c, ia − id) = i (X, Y , Z) tan

φ

2
(A12)

and produces the analogue of the Gibbs vector for a Lorentz boost.
In this case the unit vector (X, Y , Z) gives the direction of the
boost and φ is the rapidity. Equation (43) can be obtained from this
result.

A general Lorentz transformation can be constructed from rota-
tions R, R′ and boosts B, B′ as

L = B · R = R′ · B′. (A13)

As noted in Section 5, the matrix elements for rotations satisfy
c = −b̄, d = a and for a boost a, b are real and c = d̄ . From this
it follows that R† = R−1 and B† = B. Given a 2 × 2 matrix or
bilinear transformation representing a Lorentz transformation the
boosts, B, B′ and thence the rotations R, R′ can be extracted by
noting that L · L† = B2 and L† · L = B′2.

As stated in the Introduction, several different methods exist to
carry out coordinate rotations. The present work has focused on
relating the standard 3D matrix rotations to bilinear rotations of
points on the complex plane. To go in the opposite direction, let
a and b be the coefficients for a bilinear rotation (7) satisfying the

unimodularity condition (8). The equivalent 3D rotation matrix is

R =

⎡
⎢⎣

Re
(
a2 − b2

) −Im
(
a2 + b2

) −2Re (ab)

Im
(
a2 − b2

)
Re

(
a2 + b2

) −2Im (ab)

2Re (āb) 2Im (āb) |a|2 − |b|2

⎤
⎥⎦ . (A14)

In some applications, rotations are performed by exploiting the
algebra of quaternions

(ix ′ + jy ′ + kz′) = (q0 + iq1 + jq2 + kq3)

· (ix + jy + kz)

· (q0 − iq1 − jq2 − kq3) (A15)

for real numbers qi satisfying q2
0 + q2

1 + q2
2 + q2

3 = 1. The quantities
i, j, k are non-commuting under multiplication and satisfy the fun-
damental equations, i2 = j2 = k2 = ijk = −1. The bilinear rotation
coefficients are related to the quaternion components by a = q0 +
i q3 and b = −q2 + iqi. Moreover, the quaternion components are
related to the Gibbs vector (A11) by

(q0 + iq1 + jq2 + kq3) = cos
θ

2
+ (iX + jY + kZ) sin

θ

2
. (A16)

The treatment of a general Lorentz transformation in a similar
fashion requires the use of biquaternions (Lanczos 1949) and is not
considered here.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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